[DS] Mathematical Fundamentals for Data Science 개강중 무료
모집인원0명
수강대상전체
수강신청기간2024-11-15 ~ 2025-12-31
학습기간2024-11-15 ~ 2025-12-31
결제여부무료
수강승인방법자동 승인
정태수(고려대학교 공과대학 산업경영공학부 교수)
주재걸(KAIST 김재철 AI 대학원 교수)
석준희(고려대학교 공과대학 반도체공학과 교수)
강좌 소개
기계학습은 데이터과학의 한 분야이며, 선형 대수, 확률, 통계, 다변수 미적분, 정보이론과 컴퓨터 학습 이론을 포함하여, 다양한 수학 원리로부터 나온 도구들과 결과들을 이용합니다. 이런 개념을 잘 아는 것은 기계학습 알고리즘의 기본 개념을 더 잘 이해하는데 중요하고 그런 개념들로부터 파생한 결과들에 대한 분석을 수행하는데 결정적입니다. 비록 데이터과학, 기계학습 그리고 인공지능에 관한 다수의 온라인 강좌 및 오프라인 강좌가 있지만, 기계학습 모델과 알고리즘에 대한 깊은 이해를 위한 수학적 배경을 제공하는 강좌는 극히 적습니다.
이에 이 강좌는 그러한 격차를 메우기 위한 의도로 설계되었습니다. 이 강좌를 통해서 우리는 기계학습 입문을 위해 필요한 기본적인 수학적 배경을 제공하려고 합니다.
이 강좌는 특히 선형 대수, 확률과 통계, 그리고 다변수 미적분과 최적화의 기본 원리를 포함합니다. 이 원리들은 기계학습에서 널리 사용되고 필요한 원리들입니다.
이 강좌는 기계학습 자체에 관한 내용이 아니라, 데이터과학과 기계학습을 위한 수학적 배경에 관한 것입니다. 그렇더라도, 이 강좌에서 특정한 기계학습 모델이나 알고리즘을 직접 논하지는 않을 것입니다.